Proteins are molecules of great size, complexity, and diversity. They are the source of dietary amino acids, both essential and nonessential, that are used for growth, maintenance, and the general well-being of man. These macromolecules, characterized by their nitrogen contents, are involved in many vital processes intricately associated with all living matter. In mammals and many internal organs are largely composed of proteins. Mineral matter of bone is held together by collagenous protein. Skin, the protective covering of the body, often accounts for about 10% of the total body protein.
Some protein function as biocatalysts (enzymes and hormones) to regulate chemical reactions within the body. Fundamental life process, such as growth, digestion and metabolism, excretion, conversion of chemical energy into mechanical work, etc, are controlled by enzymes and hormones. Blood plasma proteins and hemoglobin regulate the osmotic pressure and PH of certain body fluids. Proteins are necessary for immunology reactions. Antibodies, modified plasma globulin proteins, defend against the invasion of foreign substances of microorganisms that can cause various diseases, food allergies result when certain ingested proteins cause an apparent modification in the defense mechanism. This leads to a variety of painful, and occasionally drastic, conditions in certain individuals.
Food shortages exist in many areas of the world, and they are likely to
become more acute and widespread as the world’s population increases. providing
adequate supplies of protein poses a much greater problem than providing
adequate supplies of either carbohydrate or fat. Proteins not only are more
costly to produce than fats or carbohydrates but the daily protein requirement
per kilogram of bodyweight remains constant throughout adult life, whereas the
requirements for fats and carbohydrates generally decrease with age.
As briefly described above, proteins have diverse biological functions, structures, and properties. Many proteins are susceptible to alteration by a number of rather subtle changes in the immediate environment. Maximum knowledge of the composition, structure, and chemical properties of the raw materials, especially proteins, is required if contemporary and future processing of foods is to best meet the needs of mankind. A considerable amount of information is already available, although much of it has been collected by biochemists using a specific food component as a model system,
Amino Acids
Amino acids are the “building blocks” of proteins. Therefore, to understand the properties of proteins, a discussion of the structures and properties o f amino acids is required. Amino acids are chemical compounds, which contain both basic amino groups and acidic carboxyl groups. Amino acids found in proteins have both the amino and carboxyl groups on the a-carbon atom; a-amino acids have the following general structure:
At neutral pH values in aqueous solutions both the amino and the carboxyl groups are ionized. The carboxyl group loses a proton and obtains a negative charge, while the amino group gains a proton and hence acquires a positive charge. As a consequence, amino acids possess dipolar characteristics. The dipolar, or zwitterions, form of amino acids has the following general structure:
Several properties of amino acids provide evidence for this structure: they are more soluble in water than in less polar solvents; when present in crystalline form they melt or decompose at relatively high temperatures (generally above 200): and they exhibit large dipole moments and large dielectric constants in neural aqueous solutions.
The R groups or side chains, of amino acids and proteins. these side chains may be classified in to four groups.
Amino acids with polar-uncharged (hydrophilic) r groups can hydrogenbond with water and are generally soluble in aqueous solutions. The hydroxyls of serine, heroine, and tyrosine; the sulfhydryl of thinly of cysteine, and the amides of asparagines and glutamine are the functional moieties present in r groups of the class of amino acids. Two of these, the toil of cysteine and the hydroxyl of tyrosine, are slightly ionized at PG 7 and can lose a proton much more readily than others in this class. The amides of asparagines and glutamine are readily hydrolyzed by acid or base to aspartic and glutamic acids, respectively.
Amino acids with nonpolar (hydrophobic) r groups are less soluble in aqueous solvents than amino acids with polar uncharged r groups. Five amino acids with hydrocarbon side chains decrease in polarity as the length of the side chain is increased. The unique structure of praline (and its hydoxylated derivative, hydroxyproline) causes this amino acid to play a unique role in protein structure.
The amino acids with positively charged (basic) r groups at ph 6-7 are lysine; argiine has a positively charged quanidino group. At ph 7.0 10% of the imidazole groups of histidine molecules are prorogated, but more than 50% carry positive at ph 6.0.
The dicarboxylic amino acids, asparic glutamic, possess net negative charges n the neutral ph range. An important artificial meal-flavoring food additive is the monosodium salt of glutamic acid.
Peptides
When the amino group of one amino acid reacts with the carboxyl group of another amino acid, a peptide bond is formed and a molecule of water is released. This can bond joins amino acids together to form proteins
The peptide bond is slightly shorter than otter single c-n bonds. This indicates that the peptide bond has some characteristics of a double bond, because of resonance stabilization with the carbony1 oxygen. Thus group adjacent to the peptide bond cannot rotate freely, this rigidity of the peptide bond holds
the six atoms in a single plane. the amino (_NH_) group does not ionize between ph o and 14 due to the double-bond properties of the peptide bond. In addition, r groups on amino acid residues, because of starch hindrance, force oxygen and hydrogen of the peptide bond to exist on a trans configuration. Therefore, the backbone of peptides and proteins has free rotation in two of the three bonds between amino acids.
If a few amino acids are joined together by peptide bonds the compound is called a” most natural peptides are formed by the partial hydrolytic of proteins; however, a few peptides are important metabolites. Ansetime and carnosine are two derivatives of histamine that are found in muscles pf animals. The biochemical function of these peptides is not understood.
Glutathione occurs in mammalian blood, yeast, and especially in tissues of rapidly dividing cells. It is thought to function in oxidative metabolism and detoxification.
Duirng oxidation, two moletcules of glutathiune join vin a disulfide bridge (-S-S) between two cysteine is not found in proteins.
Other peptides functino as antibodies and hormones. Oxytocin and hormones. Oxytocin and vasopressin are examples of peptide hormones.
Protein structure
Proteins perform a wide variety of biological functions and since they are composed of hundreds of amino acids, their structures are much mere complex than those of peptides.
Enzymes are globular proteins produced in living matter for the special purpose of catalyzing vital chemical reactions that otherwise do not occur under physiological conditions. Hemoglobin and myoglobin are hemo-containing proteins that transport oxygen and carbon dioxide in the blood and muscles. The major muscle proteins, actin and myosin, convert chemical energy to mechanical work, while proteins in tendons (collagen and elastim) bind muscles to bones, skin, hairy fingernails, and toenails are pertinacious protective substance. The food scientist is concerned about proteins in foods since knowledge of protein structure and behavior allows him to more ably manipulate foods for the benefit mankind.
Nearly an infinite number of proteins could be synthesized from the 21natural occurring amino acids. However, it has been estimated that only about 2000 different proteins exist in nature. The number is greater than this if one considers the slight variations found in proteins from different species.
The linear sequence of amino acids in protein is referred toast “primary structure “. In a few proteins the primary structure has been determined and one protein (ribonuclease) has been synthesized in the laboratory. It is the unique sequence of amino acids that imparts many of the fundamental properties to different protein and tertiary structures. If the protein contains a considerable number of amino acids with hydrophobic groups, its solubility in aqueous solvents is probable less than that of proteins containing amino acids with many hydrophilic groups.
If the primary structure of the protein were not folded, protein molecules would be excessively long and thin. A protein having a molecular weight of 13,000 would be 448 a thick. This structure allows excessive interaction with other substances, and it is not found in nature The three-dimensional manner in which relatively close members of the protein chain are arranged is referred to as” secondary structure.”
examples or secondary structure are the a-helix of wool, the pleated-sheet configuration of silk, and the collagen helix.
The native structure of a protein is that structure which possesses the lowest feasible free energy. Therefore, the structure of a protein is not random but somewhat ordered. when the restrictions of the peptide bond are superimposed on a polyamino acid chain of a globular protein, a right handed coil, the ∝-helix, appears to be one of the most ordered and stable structures feasible.
the ∝-helix contains 3.6 amino acid residues per turn lof the protein backbone, with the r groups of the amino acids extending outward from the axis of the helical structure, hydrogen bonding can occur between the nitrogen of one peptide bond and the oxygen of another peptide bond four residues along the protein chain, the hydrogen bonds are nearly parallel to the axis of the helix, lending strength to the helical structure, since this arrangement allows each peptide bond to form a hydrogen bond, the stability of the structure greatly enhanced. The coil of the helix is sufficiently compact and stables that even substances with strong tendencies to participate in hydrogen bonding, such as water, cannot enter the core.
A secondary saturation found in many fibrous proteins is the β-pleated sheet configuration. In this configuration the peptide backbone forms a zigzag pattern, with the r groups of the amino acids extending alive and below the peptide chain. Since all peptide bonds are available for hydrogen bonding, this configuration allows maximum cross-linking between adjacent polypeptide chains and thus good stability. Both parallel-pleated sheet, where the polypeptide chains run in opposite directions, are possible. Where groups are bulky or have little charges, the interactions of the r groups do not allow the pleated-sheet configuration to exist. silk and insect fibers are the best examples of theβ-sheet, although feathers of birds contain a complicated form of these configuration.
Another type of secondary structure of fibrous proteins is the collagen helix. collagen is the most abundant protein in higher vertebrates, accounting for one-third of the total body protein, collagen resists stretching, is the major component of tendons, and contains one-third glycine and one-fourth proline or hydroxyprolinethe rigid r groups, and the lack of hydrogen bonding by peptide linkages involving proline and hydroxyproline, prevents formation of an ∝-helical structure and forces the collagen polypeptide chain into an odd kinked-type helix. Peptide bonds composed of glycine form interchain hydrogen bonds with two other collagen polypeptide chains, and this results in a stable triple helix. This triple-helical structure is called “tropocollagen” and it has a molecular weight of 3000,000 Daltons.
The manner in, which large portions of it protein chain are arranged is referred to as tertiary structure. This involves folding of regular unts of the secondary structure as well as the structuring of areas of the peptide chain that are devoid of secondary structure. for example, some proteins contain areas where ∝-helical structure exists and other areas where this structure cannot form. depending on the amino acid sequence, the length of the ∝-helical portions are held together by hydrogen bonds formed between r groups, by salt linkages, by hydrophobic interactions, and by covalent disulfide(-s-s-0 linkages.
The structures discussed so far have involved only a single peptide chain. The structure formed when individual (subunit) polypeptide chains interact to form a native protein molecule is referred to as “quaternary structure”. The bonding mechanisms that hold protein chains together are generally the same as those involved in tertiary structure, with the possible exception that disulfide bonds do not assist in maitaining the quaternary structures of proteins
第四課 氨基酸和蛋白質(zhì)
蛋白質(zhì)錯(cuò)綜復(fù)雜、多種多樣的大分子物質(zhì),是食物必須氨基酸和非必須氨基酸的來(lái)源。人體利用這些氨基酸以滿足生長(zhǎng)發(fā)育、修復(fù)組織和維持正常健康生活的要求。這些大分子以含氮為其特征,參與了許多與各種有生命物質(zhì)有復(fù)雜聯(lián)系的生命過(guò)程。在包括人類(lèi)在內(nèi)的哺乳動(dòng)物中,蛋白質(zhì)起著機(jī)體改造成分的作用,肌肉和許多體內(nèi)器官主要由蛋白質(zhì)構(gòu)成。骨骼中的礦物質(zhì)靠膠原蛋白得以保持在一起。機(jī)體的保護(hù)層—皮膚中的蛋白質(zhì)通常占機(jī)體蛋白質(zhì)總量的10%的左右。
有些蛋白質(zhì)有生物催化劑(酶和激素)的作用,以調(diào)節(jié)體內(nèi)的化學(xué)反應(yīng)。基本的生命過(guò)程如生長(zhǎng)、消化、代謝、排泄、化學(xué)能轉(zhuǎn)變成機(jī)械功等等都受酶和激素的控制。某些體液的滲透壓和pH值受制于血漿蛋白和血紅蛋白。蛋白質(zhì)對(duì)免疫反應(yīng)是必不可少的。抗體(改性的血漿球蛋白能引起疾病的外來(lái)雜質(zhì)和微生物的入侵。當(dāng)某些攝入的蛋白質(zhì)使防御機(jī)制產(chǎn)生明顯的變化時(shí),便發(fā)生人體的生物過(guò)敏。這就導(dǎo)致某些個(gè)體身上出現(xiàn)各種各樣的疾病,且有時(shí)是急劇的病情。
食物短缺現(xiàn)象在世界許多地區(qū)存在。隨著人口的增加,這個(gè)問(wèn)題很可能愈來(lái)愈尖銳、愈普遍。而蛋白質(zhì)供應(yīng)不足問(wèn)題遠(yuǎn)比碳水化合物或脂肪供應(yīng)不足更為嚴(yán)重。蛋白質(zhì)不僅它的產(chǎn)出費(fèi)用要比碳水化合物或脂肪的產(chǎn)出費(fèi)用為高,而且每千克每天所需的蛋白質(zhì)量造整個(gè)成年期是恒定的,而每天所需的脂肪和碳水化合物量一般都隨著年齡的增長(zhǎng)而逐漸減少。
正如上面簡(jiǎn)述的一樣,蛋白質(zhì)有多種不同的結(jié)構(gòu)、性質(zhì)和生理功能。許多蛋白質(zhì)容易受周?chē)h(huán)境的一系列微妙變化的影響而發(fā)生變化。要想使現(xiàn)在和將來(lái)的食品加工能理想的滿足人類(lèi)的需要,就必須徹底了解原料特別是蛋白質(zhì)的組成結(jié)構(gòu)和化學(xué)性質(zhì)。目前,已經(jīng)有這方面的大量資料可供利用,不過(guò)其中大部分是生物化學(xué)家利用某一特定食物成分作為模擬物系加以收集的。
氨基酸
氨基酸是蛋白質(zhì)的“結(jié)構(gòu)單元”。因此,要了解蛋白質(zhì)的性質(zhì),舊需要討論氨基酸的結(jié)構(gòu)和性質(zhì)。氨基酸是既含氨基又含酸性羧基的化合物。蛋白質(zhì)中的氨基酸在α-碳原子上同時(shí)有氨基和羧基。α-氨基酸具有如下的一般結(jié)構(gòu):
在中性pH水溶液中,氨基和羧基都呈離子狀態(tài)。羧基失去一個(gè)質(zhì)子而帶負(fù)電荷,同時(shí)氨基得到一個(gè)質(zhì)子而帶正電荷。結(jié)果氨基酸便具有偶極的特性。氨基酸的這種偶極形式(即兩性形式)有如下的一般結(jié)構(gòu):
氨基酸有好幾種性質(zhì)都反映了這種結(jié)構(gòu),這些性質(zhì)是:它們易溶于水而不易溶于極性很小的溶劑:當(dāng)以晶體形式存在時(shí),它們要在較高溫度(一般在200℃以上)下熔化或分解;它們?cè)谥行匀芤悍N顯示出很大的偶極矩和介電常數(shù)。
氨基酸的側(cè)鏈R基團(tuán)對(duì)氨基酸和蛋白質(zhì)的化學(xué)性質(zhì)產(chǎn)生重大的影響。這些側(cè)鏈可以分為四類(lèi)。
帶有極性非荷電的(親水的)R基團(tuán)的氨基酸能與水形成氫鍵,通常能溶于水溶液。絲氨酸、蘇氨酸和酪氨酸的羥基,半胱氨酸的硫氫基(即硫醇)以及天冬酰胺和谷氨酰胺的酰胺基時(shí)出現(xiàn)在這類(lèi)氨基酸R基團(tuán)中的功能部分,其中半胱氨酸的硫羥基和酪氨酸的羥基在pH7時(shí)能輕度離子化,因而比這類(lèi)中其它氨基酸更容易失去質(zhì)子。天冬酰胺和谷氨酰胺的酰胺基容易被酸和堿水解,分別形成天冬氨酸和谷氨酸。
帶有非極性(疏水的)R集團(tuán)的氨基酸在水溶液中的溶解性比帶有極性非荷電的R基團(tuán)的氨基酸要小得多。帶有烴側(cè)鏈的五種氨基酸,其側(cè)鏈隨側(cè)鏈長(zhǎng)度增加而降低。脯氨酸(以及其烴基衍生物羥脯氨酸)的獨(dú)特結(jié)構(gòu)使這種氨基酸在蛋白質(zhì)結(jié)構(gòu)中有獨(dú)特的地位。
pH6~7時(shí)帶正電荷(堿性的)R基團(tuán)的氨基酸有賴氨酸、精氨酸和組氨酸。賴氨酸帶正電的原因主要在于氨基,而精氨酸則具有帶正電荷的胍基。pH7時(shí)組氨酸分子中的咪唑基有10%質(zhì)子化,但在pH6時(shí)則有50%以上帶正電荷。
二羥基氨基酸(天冬氨酸和谷氨酸)在中性pH范圍內(nèi)帶凈負(fù)電荷,谷氨酸的一鈉鹽是一種重要的膳食調(diào)味用的人造食品添加劑。
肽
當(dāng)一個(gè)氨基酸分子的氨基與另一個(gè)氨基酸分子的羧基起反應(yīng)時(shí),便形成一個(gè)肽鍵,同時(shí)釋放出一分子水。這種C-N鍵把眾多的氨基酸連接在一起形成蛋白質(zhì)。
這種肽鍵比其它簡(jiǎn)單的C-N鍵略短,這說(shuō)明由于肽鍵與羰基氧的共振穩(wěn)定作用,肽鍵具有了一定的雙鍵特性。這樣,緊鄰肽鍵的基團(tuán)就不能自由轉(zhuǎn)動(dòng)了。肽鍵的這種剛性使六個(gè)原子保持在一個(gè)平面上。 H
由于肽鍵的雙鍵性質(zhì),亞氨基(-NH-)在pH0~14之間均不能離子化。此外,由于立體位阻現(xiàn)象,氨基酸殘基上的R基團(tuán)迫使肽鍵上的氧原子和氫原子只能以反式構(gòu)型存在。因此,多肽和蛋白質(zhì)的主鏈只可能在氨基酸之間的三個(gè)鍵中的兩個(gè)鍵上作自由轉(zhuǎn)動(dòng)。
如果少數(shù)幾個(gè)氨基酸以肽鍵連接起來(lái),這樣的化合物就稱為“肽”大多數(shù)天然肽是由蛋白質(zhì)部分水解形成的?墒,有少數(shù)肽則是重要的代謝產(chǎn)物。鵝肌肽和肌肽是動(dòng)物肌肉中組氨酸的兩種衍生物,這些肽生物化學(xué)功能目前還不清楚。
谷胱甘肽存在于哺乳動(dòng)物血液、酵母之中,特別是快速分解的細(xì)胞質(zhì)組織中。一般認(rèn)為,這種肽具有參與氧化代謝和解毒作用的功能。氧化過(guò)程中,兩分子谷胱甘肽通過(guò)兩個(gè)半胱氨酸殘基之間的二硫鍵-S-S-連接起來(lái)。在蛋白質(zhì)中未曾發(fā)現(xiàn)谷氨酸的γ-羰基與半胱氨酸連成的肽鍵。
此外,還有具抗體和激素功能的肽。催產(chǎn)素和抗利尿素就是肽激素的例子。
蛋白質(zhì)的結(jié)構(gòu)
蛋白質(zhì)執(zhí)行的多種多樣的生物功能,而且由于它是數(shù)百個(gè)氨基酸組成的,故其結(jié)構(gòu)遠(yuǎn)比肽為復(fù)雜。
酶是生物中產(chǎn)生的球狀蛋白質(zhì),目的是專(zhuān)門(mén)催化某些生物化學(xué)反應(yīng),不然的話,這些化學(xué)反應(yīng)在生理?xiàng)l件下是不會(huì)發(fā)生的。血紅蛋白和肌紅蛋白是輸送血液和肌肉中氧和二氧化碳的含血紅素的蛋白質(zhì)。重要的肌肉蛋白—肌動(dòng)蛋白和肌球蛋白把化學(xué)能轉(zhuǎn)變成機(jī)械能;而腱中的蛋白質(zhì)(膠原蛋白和彈性蛋白)則是將肌肉粘連在骨骼上。皮膚、毛發(fā)、指(趾)甲是蛋白質(zhì)類(lèi)的保護(hù)物質(zhì)。食品科學(xué)家之所以關(guān)注食物蛋白質(zhì),是因?yàn)檎莆樟说鞍踪|(zhì)結(jié)構(gòu)和功能方面的知識(shí),才能更好的加工和處理食品,造福于人類(lèi)。
用21種天然存在的氨基酸幾乎可以合成無(wú)數(shù)的蛋白質(zhì)?墒,據(jù)估計(jì)自然界只存在約2000種不同的蛋白質(zhì),如果考慮不同物種蛋白質(zhì)存在的微小差異,則蛋白質(zhì)數(shù)目就超過(guò)此數(shù)。
蛋白質(zhì)分子內(nèi)氨基酸的直線排列次序被看作是蛋白質(zhì)的一級(jí)結(jié)構(gòu)。少數(shù)蛋白質(zhì)的一級(jí)結(jié)構(gòu)已經(jīng)被確定。而且已在實(shí)驗(yàn)室里合成了其中一種蛋白質(zhì)(核糖核酸)。正是這種氨基酸的獨(dú)特排列順序賦予不同蛋白質(zhì)以許多基本特性,且在很大程度上決定了它們的二級(jí)和三級(jí)結(jié)構(gòu)。如果蛋白質(zhì)中含有大量帶疏水基團(tuán)的氨基酸,則它在水溶劑中的溶解性就可能比帶許多親水基團(tuán)的氨基酸的蛋白質(zhì)差。
如果蛋白質(zhì)的一級(jí)結(jié)構(gòu)不是折疊的,那么蛋白質(zhì)分子就會(huì)很長(zhǎng)很細(xì)。分子量為13,000蛋白質(zhì)分子就應(yīng)有448納米長(zhǎng)和3.7納米粗這種結(jié)構(gòu)將使它們可能與其它物質(zhì)發(fā)生過(guò)度的相互反應(yīng),然而這樣的結(jié)構(gòu)在自然界還未發(fā)現(xiàn)。蛋白質(zhì)鏈中相互靠近的鏈節(jié)與鏈節(jié)之間的三維排列方式即為蛋白質(zhì)的“二級(jí)結(jié)構(gòu)”。二級(jí)結(jié)構(gòu)的具體例子有羊毛蛋白的α-螺旋結(jié)構(gòu),蠶絲蛋白的折疊片結(jié)構(gòu)和膠原蛋白的螺旋結(jié)構(gòu)。
蛋白質(zhì)的自然結(jié)構(gòu)是含有最低可能自由能的結(jié)構(gòu)。因此,蛋白質(zhì)的結(jié)構(gòu)不是任意的,而是有一定規(guī)則的。當(dāng)球狀蛋白質(zhì)的聚氨基酸鏈上受到肽鍵約束時(shí),右螺旋(即α-螺旋)看來(lái)是最有規(guī)則、最為穩(wěn)定的合理結(jié)構(gòu)之一。
每一圈α-螺旋的蛋白質(zhì)主鏈上含有3.6個(gè)氨基酸殘基,而氨基酸的R基團(tuán)則從螺旋結(jié)構(gòu)的軸線向外伸出,一個(gè)肽鍵的氮能夠與另一個(gè)沿蛋白質(zhì)主鏈相距四個(gè)氨基酸殘基處的氧形成氫鍵。此氫鍵差不多與α-螺旋軸線平行,賦予螺旋結(jié)構(gòu)以強(qiáng)度。由于這樣的排列能使每一個(gè)肽鍵都能形成氫鍵,因此大大加強(qiáng)了結(jié)構(gòu)的穩(wěn)定性。螺旋圈是非常緊密和堅(jiān)固的,所以即使象水那樣的有強(qiáng)烈參與形成氫鍵趨勢(shì)的物質(zhì),也不能進(jìn)入螺旋中央部分。
出現(xiàn)在許多纖維狀蛋白質(zhì)中的二級(jí)結(jié)構(gòu)是β-折疊片結(jié)構(gòu)。在這構(gòu)型中,肽主鏈呈鋸齒形,其氨基酸的R基團(tuán)向肽鏈的上方和下方伸展。由于所有肽鍵都可供氫鍵形成,故這種構(gòu)型能夠使相鄰的多肽鏈之間充分形成交聯(lián),從而具有良好的穩(wěn)定性。有兩種折疊片,即相鄰多肽鏈走向相同的平行折疊片和走向相反的反平行折疊片,均有可能存在。如果多肽鏈中R基團(tuán)過(guò)大,或帶有同種電荷,則R基團(tuán)間的相互作用使β-折疊片不可能形成。蠶絲和昆蟲(chóng)纖維蛋白是β-折疊結(jié)構(gòu)的最好例子,而鳥(niǎo)類(lèi)羽毛中所含的是這種構(gòu)型的復(fù)雜形式。
纖維蛋白的另一種二極結(jié)構(gòu)是膠原螺旋。膠原螺旋是高等脊椎動(dòng)物中最豐富的一種蛋白質(zhì),占動(dòng)物體蛋白總量的1/3。膠原蛋白中含有1\3的甘氨酸和1\4脯氨酸或羥脯氨酸,能抵抗拉伸,是腱的主要組分。由于R基團(tuán)的剛性以及脯氨酸、羥脯氨酸參與的肽式鍵合不能形成氫鍵的原因,所以α-螺旋結(jié)構(gòu)無(wú)法形成,迫使膠原多肽鏈變成一種零散結(jié)節(jié)式的螺旋體,膠原多肽鏈中由甘氨酸構(gòu)成的肽鍵與另兩條多肽鏈形成了鍵間氫鍵,產(chǎn)生了一種穩(wěn)定的三股螺旋。此三股螺旋結(jié)構(gòu)稱為“原膠原”,其分子量為30萬(wàn)道爾頓。
蛋白質(zhì)鏈中大鏈段的排列方式稱為蛋白質(zhì)的“三級(jí)結(jié)構(gòu)”。它包括二級(jí)結(jié)構(gòu)常規(guī)單元的折疊以及無(wú)二級(jí)結(jié)構(gòu)肽鏈若干區(qū)域的結(jié)構(gòu)化。例如,某些蛋白質(zhì)中包含了有α-螺旋結(jié)構(gòu)存在的區(qū)域和另外不能形成這種結(jié)構(gòu)的區(qū)域。根據(jù)氨基酸順序的不同,此α-螺旋段的長(zhǎng)度也不同,并賦予獨(dú)特的三級(jí)結(jié)構(gòu),這些折疊部分是靠R基團(tuán)之間所形成的氫鍵,靠鹽鍵、疏水相互作用以及共價(jià)二硫鍵(-S-S-)而結(jié)合在一起的。
至此所討論的結(jié)構(gòu)僅涉及單個(gè)肽鏈的結(jié)構(gòu)。各個(gè)(亞單位)多肽鏈相互作用變成天然蛋白質(zhì)分子時(shí)所形成的結(jié)構(gòu)即為蛋白質(zhì)的“四級(jí)結(jié)構(gòu)”。使蛋白質(zhì)鍵結(jié)合在一起的鍵合機(jī)制通常與三級(jí)結(jié)構(gòu)中所述的相同,可能的例外情況是雙硫鍵不參與蛋白質(zhì)四級(jí)結(jié)構(gòu)的保持。
專(zhuān)業(yè)英語(yǔ)詞匯
intricate a.復(fù)雜的,錯(cuò)綜的,纏結(jié)的,難懂的
collagenous a.膠原的
globulin 球蛋白
plasma 血漿,原生質(zhì)
immunological 免疫的
hemoglobin 血紅蛋白
basic amino 堿性的氨基
acidic carboxyl 酸性的羧基
aqueous ①水的 ②含水的 ③水成的
proton 質(zhì)子,氕核
dipolar 偶極的,兩極的
zwitterion 兩性離子
crystalline ①結(jié)晶的,晶狀 ②清澈的
hydrophilic 親水的
serine 絲氨酸,羥基丙氨酸
threonine 羥基丁氨酸,蘇氨酸
tyrosine 酪氨酸, 3-對(duì)羥苯基丙氨酸
sulfhydryl 氫硫的 ~enzyme 硫化氫解酶 ~ group 巰基
cysteine 半胱氨酸,巰基丙氨酸
cystine 胱氨酸,雙巰丙氨酸
amide ①酰胺 ②氨化物
asparagine 天門(mén)冬酰胺
glutamine 谷氨酰胺
aspartic acid 天門(mén)冬氨酸,丁氨二酸
glutamic acid 谷氨酸
proline 脯氨酸,氮戊環(huán)-[2]-基羧酸
lysine 賴氨酸
arginine 精氨酸
histidine 組氨酸,咪唑丙氨酸
quanidino 胍
imidazol n. 咪唑;1,3-二氮雜茂
resonance n. ①回聲,反響 ②[物]共振,共鳴;諧振 ③[醫(yī)]叩響
imino 亞氨
steric a.空間的,位的
anserine 鵝肌肽
carnosine 肌肽
glutathione 谷胱甘肽
peptide肽,縮氨酸
oxytocin n.(垂體)后葉催產(chǎn)素
vasopressin n.后葉加(血)壓素,加壓素
carbonyl 羰基,碳酰
hemoglobin 血紅蛋白 hemo-表示“血”
myoglobin 肌紅蛋白
actin 肌動(dòng)蛋白
myosin 肌球蛋白
tendon 腱,筋根
collagen 膠原,膠原蛋白
elastin 彈性蛋白
ribonuclease 核糖核酸酶
hydrophobic 疏水的
restriction n. 限制,限定,約束
vertebrate n.脊椎動(dòng)物 a.①有椎骨的,有脊椎的,脊椎動(dòng)物的 ②(作品等)結(jié)構(gòu)嚴(yán)密的
kink n.①(繩索,頭發(fā)的)細(xì)結(jié),絞纏 ②奇想,怪念頭,乖僻 ③(奇特的)妙法 ④(頸背等處的)
肌肉痙攣,抽筋 ⑤[美](結(jié)構(gòu)或設(shè)計(jì)等的)缺陷 vt.使紐結(jié),使絞纏 vi紐結(jié),打結(jié)
glycine 甘氨酸,氨基醋酸
tropocollagen 原膠原
dalton 道爾頓
devoid a. 缺乏,沒(méi)有(of)
covalent 共價(jià) ~ bond共價(jià)鍵
quaternary a.①四個(gè)一組的,四部組成的,第四的 ②四元的,四價(jià)的,季的 ③[地]第四紀(jì)的
n.①四,四個(gè)一組,第四組中的組成部分 ②[數(shù)]四進(jìn)制 ③[地]第四紀(jì)
zigzag ①之字形,Z字形,鋸齒形;②之字形的線條(或道路、壕溝、裝飾等);③蜿蜒曲折,盤(pán)旋彎曲
專(zhuān)業(yè)英語(yǔ)總結(jié)
English Knowledge point:
1. be of +名詞,相當(dāng)于形容詞。
F: Proteins are molecules of great size, complexity, and diversity, proteins are molecules of great size, complexity, and diversity. roteins are molecules of great size, complexity, and diversity, proteins are molecules of great size, complexity, and diversity.
2. at PH 7, at neutral PH (用介詞at)
SOME GOOD SENTENCE:
1. Amino acids are the “building blocks” of proteins.
Skin the protective covering of the body, often accounts for about 10% of the total body protein.
2. Skin the protective covering of the body, often accounts for about 10% of the total body protein.
3. Many proteins are susceptible to alteration by a number of rather subtle changes in the immediate environment.
4. A considerable amount of information is already available, although much of it has been collected by biochemists using a specific food component as a model system.
5. Several properties of amino acids provide evidence for this structure.
6. The amino is responsible for the positive charge of lysine .while arginine has a positively charged quanidino group.
English Knowledge point:
1. be of +名詞,相當(dāng)于形容詞。
F: Proteins are molecules of great size, complexity, and diversity, proteins are molecules of great size, complexity, and diversity. roteins are molecules of great size, complexity, and diversity, proteins are molecules of great size, complexity, and diversity.
2. at PH 7, at neutral PH (用介詞at)
專(zhuān)業(yè)英語(yǔ)難點(diǎn)
SOME GOOD SENTENCE:
1. Amino acids are the “building blocks” of proteins.
Skin the protective covering of the body, often accounts for about 10% of the total body protein.
2. Skin the protective covering of the body, often accounts for about 10% of the total body protein.
3. Many proteins are susceptible to alteration by a number of rather subtle changes in the immediate environment.
4. A considerable amount of information is already available, although much of it has been collected by biochemists using a specific food component as a model system.
5. Several properties of amino acids provide evidence for this structure.
6. The amino is responsible for the positive charge of lysine .while arginine has a positively charged quanidino group.