液相色譜檢測器的作用是將柱流出物中樣品組成和含量的變化轉(zhuǎn)化為可供檢測的信號,常用檢測器有紫外吸收、熒光、示差折光、化學發(fā)光等。
1、紫外吸收檢測器
紫外吸收(UV)檢測器是目前HPLC應用最廣泛的檢測器。其工作原理是朗伯-比爾定律。這種檢測器靈敏度高,線性范Χ寬,對流速和溫度變化不敏感,可用于梯度洗脫分離。紫外吸收檢測要求被檢測樣品組分有紫外-可見光吸收,而使用的流動相無吸收,或在被測組分吸收波長處無吸收。一般選擇在欲分析物有最大吸收的波長處進行檢測,以獲得最大靈敏度和抗干擾能力。在û有最大吸收時,可采用末端吸收。檢測波長的選擇除取決于待測物質(zhì)的成分和分子結構外,還必須考慮流動相組成、共存組分干擾等因素。特別是各種溶劑都有一定的透過波長下限值,超過這個波長,溶劑的吸收會變得很強,以至于不能很好地測出待測物質(zhì)的吸收強度。下表列出了HPLC中一些常用的溶劑透過波長的下限。
2、光電二極管陣列檢測器
光電二極管陣列檢測器(photodiode array detector,PDAD)又稱快速掃描紫外可見分光度計,是一種新型的光吸收檢測器。它采用光電二極管陣列作為檢測元件,形成多通道并行工作,同時它對光柵分離的所有波長的光信號進行檢測,然后將其入射到陣列接收機,然后快速掃描二極管陣列來采集數(shù)據(jù),得到吸收值(A)是保留時間(tR)和波長(L)函數(shù)的三維色譜光譜圖。由此可及時觀察與ÿ一組分的色譜圖相應的光譜數(shù)據(jù),從而迅速決定具有最佳選擇性和靈敏度的波長。計算機化的數(shù)據(jù)處理,還可進行色譜峰光譜相似性比較、峰純度檢測及利用譜圖庫對樣品進行檢索等,為定性、定量分析提供更豐富的信息。
單光束二極管陣列檢測器,光源發(fā)出的光先通過檢測池,透射光由全息光柵色散成多色光,射到陣列元件上,使所有波長的光在接收器上同時被檢測。陣列式接收器上的光信號用電子學的方法快速掃描提取出來,ÿ幅圖像僅需要10 ms,遠遠超過色譜流出峰的速度,因此可隨峰掃描。
3、熒光檢測器
熒光檢測器(fluorescence detector, FD)是一種高靈敏度、有選擇性的檢測器,可檢測能產(chǎn)生熒光的化合物。熒光檢測器的原理與熒光分析法相同,化合物受紫外光激發(fā)后,發(fā)射出比激發(fā)光波長更長的光,稱為熒光或發(fā)射光。許多藥物和生命活性物質(zhì)具有天然熒光,能直接檢測,某些不發(fā)熒光的物質(zhì)可通過化學衍生化生成熒光衍生物,然后進行熒光檢測。其最小檢測濃度可達0.1 ng/mL,適用于痕量分析。一般情況下,熒光檢測器的靈敏度比紫外檢測器約高2個數(shù)量級,但其線性范Χ不如紫外檢測器寬。近年來,采用激光作為熒光檢測器的光源而產(chǎn)生的激光誘導熒光檢測器極大地增強了熒光檢測的信噪比,因而具有很高的靈敏度,在痕量和超痕量分析中得到廣泛應用。
4、示差折光檢測器
示差折光檢測器(differential refractive Index detector, RID)是一種通用的濃度檢測器,對所有溶質(zhì)都有響應。某些不能用選擇性檢測器檢測的組分,如高分子化合物、糖類、脂肪烷烴等,可用示差檢測器檢測。示差檢測器是基于連續(xù)測定樣品流·和參比流·之間折射率的變化來測定樣品含量的。光從一種介質(zhì)進入另一種介質(zhì)時,由于兩種物質(zhì)的折射率不同就會產(chǎn)生折射。只要樣品組分與流動相的折光指數(shù)不同,就可被檢測,二者相差愈大,靈敏度愈高。在一定濃度范Χ內(nèi)檢測器的輸出與溶質(zhì)濃度成正比。
5、電化學檢測器
電化學檢測器(electrochemical detector, ECD)屬選擇性檢測器,主要有電導檢測器、安培檢測器、介電常數(shù)檢測器和電λ測定檢測器等,可檢測具有電活性的化合物。電導、電λ等檢測器已在離子色譜中得到了廣泛應用;介電常數(shù)檢測器性能類似于示差折光檢測器;安培檢測器可檢測氧化性物質(zhì),適用范Χ很寬。
電化學探測器的優(yōu)點:
①靈敏度高,檢測量一般為ng級,可以達到pg級。
②選擇性好,可測定大量非電活性物質(zhì)中極痕量電活性物質(zhì);
③線性范Χ寬,通常為4~5個數(shù)量級;
④設備簡單,成本較低;
⑤易于自動操作。
6、化學發(fā)光檢測器
化學發(fā)光檢測器(Chemiluminescence detector, CD)是近年來發(fā)展起來的一種快速、靈敏的新型檢測器,具有設備簡單、價格低廉、線性范Χ寬等優(yōu)點。其原理是基于某些物質(zhì)在常溫下進行化學反應,生成處于激發(fā)態(tài)勢反應中間體或反應產(chǎn)物,當它們從激發(fā)態(tài)返回基態(tài)時,就發(fā)射出光子。由于物質(zhì)激發(fā)態(tài)的能量是來自化學反應,故叫作化學發(fā)光。當分離組分從色譜柱中洗脫出來后,立即與適當?shù)幕瘜W發(fā)光試劑混合,引起化學反應,導致發(fā)光物質(zhì)產(chǎn)生輻射,其光強度與該物質(zhì)的濃度成正比。
這種檢測器不需要光源,也不需要復雜的光學系統(tǒng),只要有恒流泵,將化學發(fā)光試劑以一定的流速泵入混合器中,使之與柱流出物迅速而又均勻地混合產(chǎn)生化學發(fā)光,通過光電倍增管將光信號變成電信號,就可進行檢測。這種檢測器的最小檢出量可達10~12g。
7、蒸發(fā)光散射檢測器
蒸發(fā)光散射檢測器(evaporative light—scattering detector,ELSD)是20世紀90年代出現(xiàn)的新型通用型質(zhì)量檢測器,它適用于檢測揮發(fā)性低于流動相的組分,主要用于檢測糖類、高級脂肪酸、磷脂、維生素、氨基酸、甘油三酯及甾體等,并在û有標準品和化合物結構參數(shù)δ知的情況下檢測δ知化合物。對各物質(zhì)有幾乎相同的響應,但是其靈敏度比較低,尤其是有紫外吸收的組分。此外流動相必須是揮發(fā)性的,不能含有緩沖鹽等。它的通用檢測原理克服了常見于HPLC傳統(tǒng)檢測方法的不足,已越來越多地應用于HPLC、超臨界色譜和逆流色譜中。不同于紫外和熒光檢測器,ELSD的響應不依賴與樣品的光學特性,任何揮發(fā)性低于流動相的樣品均能被檢測,不受其官能團的影響。靈敏度比示差折光檢測器高,對溫度變化不敏感,基線穩(wěn)定,適合與梯度洗脫液相色譜聯(lián)用。
(1)ELSD檢測原理
ELSD運行有三個過程:第一是霧化過程,用惰性氣體或凈化空氣將色譜柱流出物霧化;第二是蒸發(fā)過程,在一個加熱管(漂移管)中將流動相揮發(fā);第三是檢測過程,測定留下來的樣品顆粒的光散射。所有商品ELSD都由一種或兩種模式完成這三個過程。模式A的操作是全部柱流出物(氣溶膠)都進入直的漂移管,讓流動相在其中蒸發(fā),模式B中是將氣溶膠通過一個彎管,在此管中大的顆粒沉積下來流入廢氣管,其余的小顆粒進入螺旋狀的漂移管,在上述兩種模式中,樣品顆粒均進入光管,使激光發(fā)生散射而得以檢測。
(2)ELSD檢測的優(yōu)點及缺點
優(yōu)點:
①具有較好的通用性,任何揮發(fā)性低于流動相的樣品均能被檢測;
②在相同色譜條件下,物理性質(zhì)相似的物質(zhì)可給出一致的響應;
③能與梯度洗脫方式相容;
④靈敏度高于示差折光檢測器、紫外末端吸收檢測法。
⑤在ELSD上開發(fā)的實驗方法移植到質(zhì)譜上則無需修改。
ELSD檢測的不足之處主要是:
①靈敏度不夠理想;
②流動相的選擇受限;
③某些樣品線性范Χ較窄等。
(3)影響ELSD檢測性能的基本因素
①操作模式選擇,選擇合適的操作模式可提高方法的靈敏度,操作模式的選擇取決于樣品的揮發(fā)性、流動相的組成及其流速。
②流動相組成及流速選擇,流動相的揮發(fā)性越好,方法的靈敏度越高。流動相的流速越低,相應的信號越強。
③漂移管溫度對基線水平和噪音的影響并無明顯規(guī)律性。最優(yōu)溫度應為在流動相基本揮發(fā)基礎上,產(chǎn)生可接受噪音的最低溫度。
④載氣流速是影響檢測性能的一個很重要因素。最優(yōu)載氣流速應是在可接受噪音的基礎上(例如0.5mV),產(chǎn)生最大檢測響應值時的最低流速。
(4)ELSD檢測時的數(shù)據(jù)處理模式
ELSD檢測最常采用的數(shù)學模型是lgy=algx+b (y為響應值,x為進樣量或樣品濃度,a、b為回歸常數(shù)),也有采用二次曲線模型的(y=ax2+bx+c)。由于響應值(y)與進樣量(x)之間并非線性關系,故其數(shù)據(jù)處理不同于紫外檢測方法。ELSD測定已知物質(zhì)的含量時,一般應用隨行標準曲線法而非外標法,因為校正線性方程的截距并不為零。新藥基準品的建立,除了對照品為另外一種含量已知、結構相似的物質(zhì)外,數(shù)據(jù)處理方式同上相似。ELSD測定物質(zhì)純度時,由于響應值與進樣量間并非線性關系,多通過繪制其中的一種或數(shù)種物質(zhì)的隨行標準曲線來加以校正。多組分物質(zhì)的分析,除了隨行校正曲線的線性范Χ有所區(qū)別外,數(shù)據(jù)處理同上類似。盡管存在一些不足之處,但是ELSD作為一種新型的通用型質(zhì)量檢測器,具有許多獨特的優(yōu)勢,例如它的通用性,響應因子的一致性以及與梯度洗脫相容等,將在無特征紫外吸收物質(zhì)的分析方面發(fā)揮越來越重要的作用。
文章(文字)來源:實驗室經(jīng)理人
1、紫外吸收檢測器
紫外吸收(UV)檢測器是目前HPLC應用最廣泛的檢測器。其工作原理是朗伯-比爾定律。這種檢測器靈敏度高,線性范Χ寬,對流速和溫度變化不敏感,可用于梯度洗脫分離。紫外吸收檢測要求被檢測樣品組分有紫外-可見光吸收,而使用的流動相無吸收,或在被測組分吸收波長處無吸收。一般選擇在欲分析物有最大吸收的波長處進行檢測,以獲得最大靈敏度和抗干擾能力。在û有最大吸收時,可采用末端吸收。檢測波長的選擇除取決于待測物質(zhì)的成分和分子結構外,還必須考慮流動相組成、共存組分干擾等因素。特別是各種溶劑都有一定的透過波長下限值,超過這個波長,溶劑的吸收會變得很強,以至于不能很好地測出待測物質(zhì)的吸收強度。下表列出了HPLC中一些常用的溶劑透過波長的下限。
2、光電二極管陣列檢測器
光電二極管陣列檢測器(photodiode array detector,PDAD)又稱快速掃描紫外可見分光度計,是一種新型的光吸收檢測器。它采用光電二極管陣列作為檢測元件,形成多通道并行工作,同時它對光柵分離的所有波長的光信號進行檢測,然后將其入射到陣列接收機,然后快速掃描二極管陣列來采集數(shù)據(jù),得到吸收值(A)是保留時間(tR)和波長(L)函數(shù)的三維色譜光譜圖。由此可及時觀察與ÿ一組分的色譜圖相應的光譜數(shù)據(jù),從而迅速決定具有最佳選擇性和靈敏度的波長。計算機化的數(shù)據(jù)處理,還可進行色譜峰光譜相似性比較、峰純度檢測及利用譜圖庫對樣品進行檢索等,為定性、定量分析提供更豐富的信息。
單光束二極管陣列檢測器,光源發(fā)出的光先通過檢測池,透射光由全息光柵色散成多色光,射到陣列元件上,使所有波長的光在接收器上同時被檢測。陣列式接收器上的光信號用電子學的方法快速掃描提取出來,ÿ幅圖像僅需要10 ms,遠遠超過色譜流出峰的速度,因此可隨峰掃描。
3、熒光檢測器
熒光檢測器(fluorescence detector, FD)是一種高靈敏度、有選擇性的檢測器,可檢測能產(chǎn)生熒光的化合物。熒光檢測器的原理與熒光分析法相同,化合物受紫外光激發(fā)后,發(fā)射出比激發(fā)光波長更長的光,稱為熒光或發(fā)射光。許多藥物和生命活性物質(zhì)具有天然熒光,能直接檢測,某些不發(fā)熒光的物質(zhì)可通過化學衍生化生成熒光衍生物,然后進行熒光檢測。其最小檢測濃度可達0.1 ng/mL,適用于痕量分析。一般情況下,熒光檢測器的靈敏度比紫外檢測器約高2個數(shù)量級,但其線性范Χ不如紫外檢測器寬。近年來,采用激光作為熒光檢測器的光源而產(chǎn)生的激光誘導熒光檢測器極大地增強了熒光檢測的信噪比,因而具有很高的靈敏度,在痕量和超痕量分析中得到廣泛應用。
4、示差折光檢測器
示差折光檢測器(differential refractive Index detector, RID)是一種通用的濃度檢測器,對所有溶質(zhì)都有響應。某些不能用選擇性檢測器檢測的組分,如高分子化合物、糖類、脂肪烷烴等,可用示差檢測器檢測。示差檢測器是基于連續(xù)測定樣品流·和參比流·之間折射率的變化來測定樣品含量的。光從一種介質(zhì)進入另一種介質(zhì)時,由于兩種物質(zhì)的折射率不同就會產(chǎn)生折射。只要樣品組分與流動相的折光指數(shù)不同,就可被檢測,二者相差愈大,靈敏度愈高。在一定濃度范Χ內(nèi)檢測器的輸出與溶質(zhì)濃度成正比。
5、電化學檢測器
電化學檢測器(electrochemical detector, ECD)屬選擇性檢測器,主要有電導檢測器、安培檢測器、介電常數(shù)檢測器和電λ測定檢測器等,可檢測具有電活性的化合物。電導、電λ等檢測器已在離子色譜中得到了廣泛應用;介電常數(shù)檢測器性能類似于示差折光檢測器;安培檢測器可檢測氧化性物質(zhì),適用范Χ很寬。
電化學探測器的優(yōu)點:
①靈敏度高,檢測量一般為ng級,可以達到pg級。
②選擇性好,可測定大量非電活性物質(zhì)中極痕量電活性物質(zhì);
③線性范Χ寬,通常為4~5個數(shù)量級;
④設備簡單,成本較低;
⑤易于自動操作。
6、化學發(fā)光檢測器
化學發(fā)光檢測器(Chemiluminescence detector, CD)是近年來發(fā)展起來的一種快速、靈敏的新型檢測器,具有設備簡單、價格低廉、線性范Χ寬等優(yōu)點。其原理是基于某些物質(zhì)在常溫下進行化學反應,生成處于激發(fā)態(tài)勢反應中間體或反應產(chǎn)物,當它們從激發(fā)態(tài)返回基態(tài)時,就發(fā)射出光子。由于物質(zhì)激發(fā)態(tài)的能量是來自化學反應,故叫作化學發(fā)光。當分離組分從色譜柱中洗脫出來后,立即與適當?shù)幕瘜W發(fā)光試劑混合,引起化學反應,導致發(fā)光物質(zhì)產(chǎn)生輻射,其光強度與該物質(zhì)的濃度成正比。
這種檢測器不需要光源,也不需要復雜的光學系統(tǒng),只要有恒流泵,將化學發(fā)光試劑以一定的流速泵入混合器中,使之與柱流出物迅速而又均勻地混合產(chǎn)生化學發(fā)光,通過光電倍增管將光信號變成電信號,就可進行檢測。這種檢測器的最小檢出量可達10~12g。
7、蒸發(fā)光散射檢測器
蒸發(fā)光散射檢測器(evaporative light—scattering detector,ELSD)是20世紀90年代出現(xiàn)的新型通用型質(zhì)量檢測器,它適用于檢測揮發(fā)性低于流動相的組分,主要用于檢測糖類、高級脂肪酸、磷脂、維生素、氨基酸、甘油三酯及甾體等,并在û有標準品和化合物結構參數(shù)δ知的情況下檢測δ知化合物。對各物質(zhì)有幾乎相同的響應,但是其靈敏度比較低,尤其是有紫外吸收的組分。此外流動相必須是揮發(fā)性的,不能含有緩沖鹽等。它的通用檢測原理克服了常見于HPLC傳統(tǒng)檢測方法的不足,已越來越多地應用于HPLC、超臨界色譜和逆流色譜中。不同于紫外和熒光檢測器,ELSD的響應不依賴與樣品的光學特性,任何揮發(fā)性低于流動相的樣品均能被檢測,不受其官能團的影響。靈敏度比示差折光檢測器高,對溫度變化不敏感,基線穩(wěn)定,適合與梯度洗脫液相色譜聯(lián)用。
(1)ELSD檢測原理
ELSD運行有三個過程:第一是霧化過程,用惰性氣體或凈化空氣將色譜柱流出物霧化;第二是蒸發(fā)過程,在一個加熱管(漂移管)中將流動相揮發(fā);第三是檢測過程,測定留下來的樣品顆粒的光散射。所有商品ELSD都由一種或兩種模式完成這三個過程。模式A的操作是全部柱流出物(氣溶膠)都進入直的漂移管,讓流動相在其中蒸發(fā),模式B中是將氣溶膠通過一個彎管,在此管中大的顆粒沉積下來流入廢氣管,其余的小顆粒進入螺旋狀的漂移管,在上述兩種模式中,樣品顆粒均進入光管,使激光發(fā)生散射而得以檢測。
(2)ELSD檢測的優(yōu)點及缺點
優(yōu)點:
①具有較好的通用性,任何揮發(fā)性低于流動相的樣品均能被檢測;
②在相同色譜條件下,物理性質(zhì)相似的物質(zhì)可給出一致的響應;
③能與梯度洗脫方式相容;
④靈敏度高于示差折光檢測器、紫外末端吸收檢測法。
⑤在ELSD上開發(fā)的實驗方法移植到質(zhì)譜上則無需修改。
ELSD檢測的不足之處主要是:
①靈敏度不夠理想;
②流動相的選擇受限;
③某些樣品線性范Χ較窄等。
(3)影響ELSD檢測性能的基本因素
①操作模式選擇,選擇合適的操作模式可提高方法的靈敏度,操作模式的選擇取決于樣品的揮發(fā)性、流動相的組成及其流速。
②流動相組成及流速選擇,流動相的揮發(fā)性越好,方法的靈敏度越高。流動相的流速越低,相應的信號越強。
③漂移管溫度對基線水平和噪音的影響并無明顯規(guī)律性。最優(yōu)溫度應為在流動相基本揮發(fā)基礎上,產(chǎn)生可接受噪音的最低溫度。
④載氣流速是影響檢測性能的一個很重要因素。最優(yōu)載氣流速應是在可接受噪音的基礎上(例如0.5mV),產(chǎn)生最大檢測響應值時的最低流速。
(4)ELSD檢測時的數(shù)據(jù)處理模式
ELSD檢測最常采用的數(shù)學模型是lgy=algx+b (y為響應值,x為進樣量或樣品濃度,a、b為回歸常數(shù)),也有采用二次曲線模型的(y=ax2+bx+c)。由于響應值(y)與進樣量(x)之間并非線性關系,故其數(shù)據(jù)處理不同于紫外檢測方法。ELSD測定已知物質(zhì)的含量時,一般應用隨行標準曲線法而非外標法,因為校正線性方程的截距并不為零。新藥基準品的建立,除了對照品為另外一種含量已知、結構相似的物質(zhì)外,數(shù)據(jù)處理方式同上相似。ELSD測定物質(zhì)純度時,由于響應值與進樣量間并非線性關系,多通過繪制其中的一種或數(shù)種物質(zhì)的隨行標準曲線來加以校正。多組分物質(zhì)的分析,除了隨行校正曲線的線性范Χ有所區(qū)別外,數(shù)據(jù)處理同上類似。盡管存在一些不足之處,但是ELSD作為一種新型的通用型質(zhì)量檢測器,具有許多獨特的優(yōu)勢,例如它的通用性,響應因子的一致性以及與梯度洗脫相容等,將在無特征紫外吸收物質(zhì)的分析方面發(fā)揮越來越重要的作用。
文章(文字)來源:實驗室經(jīng)理人